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ABSTRACT  

The present work emphasizes on the geographical perspectives of temperature 

fluctuations and related environmental issues. In this scenario, we study weather 

forecasting via the techniques of simulated annealing. Simulated annealing provides 

significant tools in optimizing complex problems, relating socioeconomic importance in 

the contemporary sciences, engineering, economics and statistics. For the given shape 

parameter of the probing material and artificial time, we examine optimization properties 

of the environmental temperature beyond the notion of Boltzmann machine. As per the 

above analysis, for a given finite artificial temperature, we find that its fluctuations over 

the system parameters yield a stable configuration, depending on the signature of 

parameters. In addition, our investigation anticipates computational weather forecasting 

and modeling of climate changing effects in the light of quenching, optimal theory, 

artificial intelligence and neural networks.  
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INTRODUCTION 

Weather has become an important research topic in the field of geographic domain [1]. 

The impulsive characteristics of the weather that keep changing with various parameters 

and its socio-economical significance interpolate researchers to develop accurate weather 

forecasting algorithms. Among various developments occurring in this field of research 

include the contemporary approaches to simulate complex numerical and physical 

systems with the aid of optimization models. Such techniques have helped the mankind 

for an improved prediction of weather in advance with a high degree of reliability. 

In general, there are two widely used methods for the weather forecasting such as 

numerical and statistical methods. Numerical weather forecasting methods involve as 

dynamic modeling of atmospheric phenomena [2]. However, the statistical methods refer 

to dynamics interpretations of the atmospheric system based on the already available 

information. For example, statistical methods mainly work with artificial neural network 

(ANN) mostly using back propagation techniques [3]. Such techniques have gained much 

attention in recent decades in the meteorological domain via the time series predictions.  

In the current scenario, precise and reliable weather predictions are considered to be a 

challenging task for the researchers. The solution for an accurate weather forecasting can 

be visualized from the perspective of physical sciences using the interpolation of Navier-

Stokes equation, mass continuity equation, first law of thermodynamics and ideal gas 
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equation [4]. These formulations help us to study the changes in the space and time arising 

from the wind, temperature, pressure and density fluctuations in the atmosphere. With the 

support of numerical methods, these equations could solve both the resolved and 

unresolved scales of the motion, resulting in a temperature gradient. To date there are 

numerous complex models available for the global weather prediction, local area 

modeling for high impact weather and air-quality predictions. Although, knowledge in 

physical process, ensemble theory and model initializations are mandatory for resolving 

the future technology challenges. This involves computing and perspective observations 

towards an accurate weather forecasting.  

Parameterization plays a major role in the prediction of the weather by creating an 

interface between the atmosphere and earth surface [5]. Parameterization mainly consists 

of diffusive, radiative and conductive effects in the atmosphere domain. The predictive 

behavior of parameterization helps us in analyzing various aspects of simulated weather, 

viz. fluctuations arising from the temperature, wind, clouds and precipitation. Numerical 

weather forecasting models make use of the similar formulations used in such 

parameterizations for short-to-medium range forecasting and creating algorithms for 

model initialization.   

While dealing with various problems in this disciple of the physical geography, one 

generically focuses on the minimization of an appropriate energy or cost function that is 

defined in a D-dimensional continuous space [6]. There are two different situations to be 

taken into consideration, i.e., if the energy/ cost is a convex function with a single 

minimum, the problem could be solved by the gradient descent method. However, one 

requires more sophisticated methods, e.g., simulated annealing to solve the same, if the 

energy or cost is a nonconvex function with multiple extrema. This technique has an 

advantage of introducing more than one artificial temperature where the concerning 

probing material could be cooled gradually. The artificial temperatures represent the 

source of stochasity that is well appropriate for detrapping from a local minimum. In 

classical viewpoint, the mandatory condition for achieving unit probability at the end of 

the global minimum is to have a logarithmic decrease of the temperature in time. This 

algorithm is called classical simulated temperature or Boltzmann machine.  

In this paper, we focus to solve large-scale optimization problems which are 

unmanageable by such conventional or existing (combinatorial) methods. Namely, our 

focus relies on configurations with a large number of objects analogous to the traveling 

salesman problem [7]. For such problems, it is known [7] that one can hardly find its 

optimum solution at large scale, thus our proposal is to optimize the undermining profile 

temperature with respect to its model parameters and find the best suited values. This 

renders an apt solution for complex optimization problems. An importance of our analysis 

arises in finding good solutions to aforementioned optimization problems even in the 

presence of noises in the data. As mentioned above, as far as our optimization analysis is 

concerned, we design simulated annealing to mimic an optimal process. This is traversed 

by mislocated atoms in a given metal when it is slowly heated and then slowly cooled in 

time.    

Below, we provide a brief account of numerical weather forecasting, simulated annealing, 

Metropolis algorithm, fluctuation analysis of the artificial temperature under variations 

of the model parameters, viz. the shape of the probing material and artificial time, in the 

next section. In section 3, we discuss results arising from fluctuations of the model 

parameters. Finally, in section 4, we conclude our paper with directions for future 

developments. 



International Scientific Conference GEOBALCANICA 2018 

129 

BACKGROUND MATERIAL AND DEVELOPMENT OF THE MODEL 

In this section, we recall the notion of the numerical weather forecasting, simulated 

annealing, Metropolis algorithm and fluctuation theory based optimization analysis of the 

artificial temperature under fluctuations of its model parameters, viz. the shape/ 

dimension of the probing material and artificial time of the scheduling algorithm.  

What is Numerical Weather Forecasting? 

Numerical weather forecasting (NWF) or the process of numerical weather prediction 

(NWP) is a mathematical procedure that is implemented via the field of computer science 

with a prior given code. This is executed mainly as an algorithm with included 

mathematical equations and formulas for optimally calculating the environmental 

parameters of the model such as the wind speed, humidity, hot or cold as higher or lower 

values of the temperature.  

Overall, NWF measures these variables, whereby we design it to optimally calculate them 

and to see how the weather will locally evolve in near future. In fact, with certain 

calculations the algorithm should predict how the climate will change in future in a given 

geographic region, whereby we generically wish to forecast "future" weather conditions.  

What is Simulated Annealing? 

Simulated annealing was firstly introduced when scientists were heating and cooling a 

heavy metal object to see how its temperature has increased or decreased on the graph 

and to mark those results in order to find an appropriate optimization of the temperature. 

In this concern, there are many simulated annealing based algorithms that can carry out 

such optimizations, namely to find the global minimum or maximum of an objective 

function. This supports us in finding good results according to previous calculations, in 

an algorithm for a given set of formulas and equations. The simulated annealing algorithm 

makes an estimation between a large number of gathered results to make them more 

precise and the concerning computations accurate for the perspective weather forecasting.  

Metropolis Algorithm  

Simulated annealing offers an enhanced optimization strategy by invoking the role of the 

Metropolis algorithm [8]. As per this hypothesis, some trades that are not lowering the 

mileage/ energy are accepted when they allow the optimizer to search more of the existing 

solution space. Mathematically, given an arbitrary trade/ state, let ∆𝐷 be the change in the 

corresponding distance with the convention that it takes a negative value for “good" 

trades, and a positive value for "bad" trades, 𝑇 be an artificial or synthetic temperature 

concerning the probing material, and 𝑅(0, 1) be a random number in the unit 

interval [0,1]. From the above perspective, in the Boltzmann's unit of the temperature [8], 

Metropolis algorithm filters out the undermining "bad" trades as per the criterion  

 

𝑒∆𝐷 𝑇⁄ > 𝑅(0,1)       (2.1) 

Here, 𝐷 is termed as the cost function, which is physically equivalent to the free energy 

in the case of the annealing of a heavy metal. To be precise, the temperature 

parameter 𝑇 is actually rescaled to 𝑘𝑇, where 𝑘 is the standard Boltzmann's constant 

and 𝑇 is the surface temperature of the probing material measured in the unit of absolute 

Kelvin scale. In practice, when 𝑇 takes a large value, many "bad" trades are accepted by 

Metropolis optimizer [8], whereby a large portion of the solution space is searched. In 



Physical Geography 

130 

general, in order to have a better result, objects under the analysis of simulated annealing 

are chosen randomly. However, there exist other refinements of the above mentioned 

Metropolis analysis, whose parametric optimization is left open for further investigations.  

As mentioned above, our optimization procedure follows an analogy of the cooling of a 

metal. Therefore, by making several trades and noticing that the concerned cost function 

slowly reduces, we may lower the temperature to a smaller value. This reduces the size 

of “bad” trades in the search space. By repeating this process several times, i.e., when the 

temperature gets sufficiently reduced, we quench the process by allowing only good 

trades as the possible solutions. This yields a local minimum of the cost function. Indeed, 

there exists a number of advanced “annealing schedules” to lower the temperature, but 

the results are mostly insensitive to such refinements and minor details.  

For example, the threshold acceptance strategy [9] accepts all the good trades, as any of 

the bad trades raising the undermining cost function above its chosen threshold value. 

Hereby, we may periodically lower the threshold as the annealing temperature. This 

provides an alternative to the Boltzmann criterion. Such simulations can be time effective, 

as we need not to either perform the exponentiation or generate the random number as in 

Eqn.(2.1).  

Stability Analysis via Fluctuation Theory 

In the sequel, for given shape parameter 𝑞 and artificial time 𝑡, we wish to determine the 

optimum value of the temperature  𝑇(𝑞, 𝑡) via its symmetric Hessian matrix 𝐻 =
(𝑇𝑖𝑗)2×2. The entries of 𝐻 are defined as the second order partial derivatives of  𝑇(𝑞, 𝑡) 

as (𝑇𝑖𝑗)2×2 = 𝜕𝑖𝜕𝑗𝑇(𝑞, 𝑡), where 𝑖, 𝑗 ∈ {𝑞, 𝑡}.  

To find an optimal value of the above artificial temperature 𝑇(𝑞, 𝑡), we require vanishing 

of the undermining flow components {𝑇𝑞 , 𝑇𝑡}, that is to find roots of the equalities 

 

𝑇𝑞 = 0, 𝑇𝑡 = 0       (2.2) 

The concerning (in)stability conditions are determined by the determinant of 𝐻 defined 

as  

 

𝐷 ≔ 𝑇𝑞𝑞 𝑇𝑡𝑡 − 𝑇𝑞𝑡
2      (2.3) 

In this concern, it is worth emphasizing that the sign of  𝐷 plays an important role. 

Namely, there exists a local minimum or stable configuration if 𝐷 > 0 with the shape 

capacity 𝑇𝑞𝑞 > 0 or the artificial time capacity 𝑇𝑡𝑡 > 0. Similarly, there is a local 

maximum of 𝑇(𝑞, 𝑡) or the undermining fluctuating configuration becomes unstable if 

𝐷 > 0 with 𝑇𝑞𝑞 < 0 or 𝑇𝑡𝑡 < 0. On the other hand, it is well known that the system goes 

under a saddle behavior when the Hessian determinant 𝐷 of the temperature profile has a 

negative value, viz. 𝐷 < 0. For the case of the vanishing discriminant 𝐷(𝑞, 𝑡) = 0, the 

stability test of the temperature 𝑇(𝑞, 𝑡) gives a degeneration curve, as displayed in 

Eqn.(2.24) in the next section. 

 

RESULTS AND DISCUSSION 

Under fluctuations of the above configuration parameters {𝑞, 𝑡}, it is known [6] that the 

artificial temperature 𝑇(𝑞, 𝑡) is defined as: 
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T(q, t) = 𝑇(𝑞) 
2𝑞−1 − 1  

(1+𝑡)𝑞−1−1
     (3.1) 

In order to simplify the subsequent expressions, the denominator of  𝑇(𝑞, 𝑡) is defined as 

 

𝑑 ≔ (1 + 𝑡)𝑞−1 − 1      (3.2) 

A direct calculation shows that we have the following shape flow component 

 

𝑇𝑞(𝑞, 𝑡) =  
1

𝑑2
[{2𝑞−1𝑑 ln 2 − (2𝑞−1 − 1)(1 + 𝑡)𝑞−1 ln(1 + 𝑡)}𝑇(𝑞) + (2𝑞−1 − 1)𝑑

𝑑𝑇

𝑑𝑞
] 

(3.3) 

Similarly, it follows that the flow component corresponding to the artificial time 𝑡 is given 

by 

 

𝑇𝑡(𝑞, 𝑡) = −(𝑞 − 1) 𝑇(𝑞)
(1+𝑡)𝑞−2

𝑑2 (2𝑞−1 − 1)    (3.4) 

Now from the Eqns.(3.3, 3.4), we see that the flow components {𝑇𝑞 , 𝑇𝑡} vanish as per the 

following cases. The flow component 𝑇𝑡 as in Eqn.(3.4) vanishes whenever we have 𝑞 =
1 or 𝑡 = −1. In both the above cases, we observe that the flow component 𝑇𝑞 as in 

Eqn.(3.3) vanishes according as a first order differential equation. 

As mentioned in the foregoing section, under fluctuations of the model parameters 𝑡 

and 𝑞, a direct differentiation of the artificial time flow component 𝑇𝑡 as in Eqn.(3.4) with 

respect to the artificial time 𝑡 yields the following artificial time capacity   

 

𝑇𝑡𝑡(𝑞, 𝑡) = −
𝑛1𝑛2

𝑑3 ,      (3.5) 

where the above factors {𝑛1, 𝑛2} are given by the expressions 

 

𝑛1 = 𝑇(𝑞)(2𝑞−1 − 1)(𝑞 − 1)(1 + 𝑡)𝑞−1     (3.6) 

𝑛2 = (𝑞 − 2)(1 + 𝑡)𝑞−1 − 2(𝑞 − 1)(1 + 𝑡)𝑞−3 − (𝑞 − 2)   (3.7) 

Similarly, by differentiating the flow component 𝑇𝑞 as in Eqn.(3.3) with respect to the 

shape/ dimension of the probing material 𝑞, we find that its capacity reads as per the 

following 

 

𝑇𝑞𝑞(𝑞, 𝑡) =
ℎ1

𝑑
−

ℎ2

𝑑2 + 2
ℎ3

𝑑3,      (3.8) 

where the components {ℎ1,  ℎ2,  ℎ3} as in the above Eqn.(3.8) are given as  

  

ℎ1 = (2𝑞−1 − 1)
𝑑2𝑇

𝑑𝑞2 + 2𝑞 ln 2 
𝑑𝑇

𝑑𝑞
+  2𝑞−1(2𝑞−1 + 1) (ln 2)2 𝑇(𝑞)   (3.9) 

ℎ2 = (1 + 𝑡)𝑞−1 ln(1 + 𝑡) {2(2𝑞−1 − 1)
𝑑𝑇

𝑑𝑞
 + (2𝑞 ln 2 + (2𝑞−1 − 1) ln(1 + 𝑡)) 𝑇(𝑞)} 

(3.10) 
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ℎ3 = (2𝑞−1 − 1)(1 + 𝑡)2𝑞−2 {ln(1 + 𝑡)}2 𝑇(𝑞)    (3.11) 

On the other hand, the correlation between the shape/ dimension of the probing material 𝑞 

and artificial time 𝑡 is given by the mixed partial derivative 𝑇𝑞𝑡(𝑞, 𝑡) of the profile 

temperature 𝑇(𝑞, 𝑡). Physically, in the 𝑞𝑡 −plane, fluctuations with respect to both the 

model parameters 𝑞 and 𝑡 may dependent on each other. In general, their dependency is 

defined as per the mixed second partial derivative of 𝑇(𝑞, 𝑡) as 

 

𝑇𝑞𝑡(𝑞, 𝑡) =
𝜕2

𝜕𝑞 𝜕𝑡
𝑇(𝑞, 𝑡)   (3.12) 

By differentiating the flow component 𝑇𝑡  as in Eqn.(3.4) with respect to the shape of the 

probing material 𝑞, it is not difficult to show that we have the following correlation 

 

   𝑇𝑞𝑡(𝑞, 𝑡) =
𝑐1

𝑑2 − 2
𝑐2

𝑑3,         (3.13) 

where the components {𝑐1, 𝑐2} as given in Eqn.(3.13) reads as per the expressions 

 

𝑐1 = (𝑞 − 1)(1 + 𝑡)𝑞−2{(2𝑞−1 − 1)
𝑑𝑇

𝑑𝑞
+ ((2𝑞−1 − 1) ln(1 + 𝑡) + 2𝑞−1 ln 2) 𝑇(𝑞)}    

(3.14) 

𝑐2 = (𝑞 − 1)(1 + 𝑡)2𝑞−3(2𝑞−1 − 1) ln(1 + 𝑡)  𝑇(𝑞)             (3.15) 

Herewith, we see that there is no correlation in the system if {𝑐1, 𝑐2} satisfy 2𝑐2 = 𝑐1𝑑. 

In the sequel, in order to examine the global stability properties of the temperature 

fluctuations in terms of the model parameters {𝑞, 𝑡}, we need to compute the discriminant  

  

          𝐷(𝑞, 𝑡) ≔  𝑇𝑞𝑞(𝑞, 𝑡). 𝑇𝑡𝑡(𝑞, 𝑡) −  𝑇𝑞𝑡(𝑞, 𝑡)2              

(3.16) 

By substituting the values of the heat capacities {𝑇𝑞𝑞(𝑞, 𝑡), 𝑇𝑡𝑡(𝑞, 𝑡)} from Eqns.(3.5, 3.8) 

and the undermining correlation component 𝑇𝑞𝑡(𝑞, 𝑡) as depicted in Eqn.(3.13), we arrive 

at the following discriminant  

 

𝐷(𝑞, 𝑡) =
1

𝑑6 {𝑛1𝑛2(ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3) + 4 𝑐1𝑐2 − 𝑐1
2 − 4 𝑐2

2},  

(3.17) 

where the capacity components {𝑛1,𝑛2, ℎ1, ℎ2, ℎ3} are given in Eqns.(3.6, 3.7, 3.9-3.11) 

and the corresponding correlation components {𝑐1, 𝑐2} read as in Eqns.(3.14, 3.15). 

Herewith, the temperature profile 𝑇(𝑞, 𝑡) has a saddle point behavior, whenever we have 

negative signature of the above discriminant, viz. 𝐷(𝑞, 𝑡) < 0. In other words, the 

Eqn.(3.17) shows that the system becomes saddle when {𝑛1,𝑛2, ℎ1, ℎ2, ℎ3, 𝑐1, 𝑐2} satisfy 

the inequality  

 

𝑛1𝑛2(ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3) < 𝑐1
2 + 4 𝑐2

2 − 4 𝑐1𝑐2    

(3.18) 
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The system remains stable or unstable according as the temperature 𝑇(𝑞, 𝑡) has a 

minimum or maximum about its fixed points. First of all, this happens if we 

have 𝐷(𝑞, 𝑡) > 0. That is, in order to find a stable configuration or a minimum value 

of 𝑇(𝑞, 𝑡) as mentioned in section 2.4, we must have 
 

𝑛1𝑛2(ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3) > 𝑐1
2 + 4 𝑐2

2 − 4 𝑐1𝑐2     

(3.19) 

with either of the following constraints 
 

(i) {
𝑛1𝑎𝑛𝑑 𝑛2 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑔𝑛 𝑓𝑜𝑟 𝑑 > 0

𝑛1𝑎𝑛𝑑 𝑛2 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑔𝑛 𝑓𝑜𝑟 𝑑 < 0
    

(3.20) 

(ii) {
ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3 < 0 𝑓𝑜𝑟 𝑑 > 0

ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3 > 0 𝑓𝑜𝑟 𝑑 < 0
      

(3.21) 

Notice that we have an unstable configuration, that is, the temperature 𝑇(𝑞, 𝑡) attains a 

maximum if it satisfies Eqn.(3.19) with the opposite conditions of Eqns.(3.20, 3.21). 

Namely, as outlined in section 2.4, we have a maximum of 𝑇(𝑞, 𝑡) if Eqn.(3.19) holds 

with either of the following conditions 
 

(i) {
𝑛1𝑎𝑛𝑑 𝑛2 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑔𝑛 𝑓𝑜𝑟 𝑑 > 0

𝑛1𝑎𝑛𝑑 𝑛2 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑔𝑛 𝑓𝑜𝑟 𝑑 < 0
    

(3.22) 

(ii) {
ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3 > 0 𝑓𝑜𝑟 𝑑 > 0

ℎ2𝑑 − ℎ1𝑑2 − 2ℎ3 < 0 𝑓𝑜𝑟 𝑑 < 0
      

(3.23) 

The stability test of 𝑇(𝑞, 𝑡) fails when it has a vanishing discriminant, viz. we 

have 𝐷(𝑞, 𝑡) = 0. Alternatively, from Eqn.(3.19), we see that this happens when the 

stability and correlation components {𝑛1,𝑛2, ℎ1, ℎ2, ℎ3, 𝑐1, 𝑐2} satisfy the equality 
 

𝑛1𝑛2 =
𝑐1

2+4 𝑐2
2−4 𝑐1𝑐2

ℎ2𝑑−ℎ1𝑑2−2ℎ3
      

(3.24) 

In this case, we say that the temperature function 𝑇(𝑞, 𝑡) is too flat. Namely, we need a 

higher derivative test to examine stability properties of the profile temperature 

𝑇(𝑞, 𝑡) under fluctuations of the system parameters {𝑞, 𝑡}. Indeed, there exists certain 

analysis based on a jerk and other parameters which are defined as the third or higher 

order derivatives of the function 𝑇(𝑞, 𝑡). In the light of the simulated annealing based 

optimizations towards an apt probe designing, we leave such investigations open for a 

future research.  
 

CONCLUSION 

The idea of this paper is to explain the notion of Numerical Weather Forecasting in 

general and to give its interpretation in the light of optimization theory. Here, we have 
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explained the simulated annealing process, and its optimization how the scientists could 

implement it in forecasting of weather and its meanings in connection with the artificial 

intelligence. 

In the sequel, we have explored mathematical perspectives for a given artificial 

temperature profile and find its flow components, capacities under different values of the 

shape parameter 𝑞 of the probing material and the artificial scheduling time 𝑡. We have 

obtained the flow components as the first order derivatives of the artificial temperature 

with respect to 𝑞 and 𝑡 values, and the fluctuation capacities as that of the pure second 

order derivatives. The system stability criterion is determined by the determinant of the 

corresponding fluctuation matrix 𝐻 according to the second order of variations of the 

artificial temperature 𝑇(𝑞, 𝑡) with respect to 𝑞 and 𝑡. Also, we find its mixed derivative 

with respect to {𝑞, 𝑡} together as the formula as in Eqn.(3.13). This explicitly gives the 

undermining system correlation. 

In nutshell, we have implemented fluctuation theory analysis from the above gathered 

values of the system capacities and correlation. Subsequently, by storing them in the 

fluctuation matrix, we have offered optimal properties of the artificial temperature under 

different parameter values. The corresponding initial value problem, its generation as a 

first order differential equation and computational optimizations [10] are left open for 

future research. In the light of temperature variations in a chosen geographic region, our 

model finds utilities for accurate prediction of weather with variation of time and probing 

material dimension. 
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