
Physical Geography; Cartography; Geographic Information Systems & Spatial Planing

3

IMPLEMENTATION WAYS FOR WEB COVERAGE SERVICE STANDARD

DOI: http://dx.doi.org/10.18509/GBP.2016.01

UDC: 004.774.6

Evgeny Panidi

Anton Terekhov

Mark Mukhamedzyanov
Saint-Petersburg State University, Russia

ABSTRACT

This study is dedicated to design and implementation of two software prototypes, which

are facilitate fast and simple Web publication of the raster coverages without specialized

dedicated Web infrastructure. First prototype is implemented in Python programming

language as a server-side Common Gateway Interface (CGI) application. The second is

implemented as a module for Node.js platform, which is very popular for development of

the multipurpose Web applications. Both solutions can be deployed using virtual shared

hosting. This feature expands the opportunities of geospatial data publication on the Web

for small- and medium-scale projects.

Keywords: Raster Coverage, Web Coverage Service, Geospatial Data Web Publication,

Open Geospatial Standards, Free and Open Source Software for Geospatial

INTRODUCTION
Web publication of the geospatial data and software tools is a modern and effective way

for distribution of the geospatial data, as well as for multiuser collaboration in the area of

formation and use of these data. A couple of international open standards developed by

Open Geospatial Consortium (http://www.opengeospatial.org/) to unify Web publication

techniques and schemas in the case of geospatial resources. However, many issues remain

unresolved in this area. First, it is the issue of effective implementation of the server-side

software and platforms, which are used for publication of the geospatial data on the Web.

One of aspects of the effectiveness in this case is related to that the most of the currently

developed and available software are designed for use of the dedicated servers or cloud

infrastructures. This feature limits seriously the capabilities of geospatial data integration

into already developed geospatial Web resources that hosted on non-dedicated hosting.

Our previous studies related to increase of flexibility of the Web-based geospatial data

processing techniques. In these studies, we investigated the opportunities of client

resources use for processing data with the help of geospatial data processing Web services

[8], [10]. One of previously produced conclusions, was that the geospatial Web service

publication schemas (both processing and data services) should be simplified in the case

of small- and medium-scale projects [11]. The conclusion was caused by abovementioned

complexity of the existing geospatial Web publication platforms. Currently, we have

investigated some possibilities of lightweight Web publication of the raster coverages,

i.e. use of publication tools that compatible with common software platforms for Web

publication. Raster coverage is one of the highly demanded data type for geospatial

analysis in many thematic areas. Nevertheless, the OGC Web Coverage Service (WCS)

2nd International Scientific Conference GEOBALCANICA 2016

4

standard [1] implemented currently only in the specialized complex server-side software

platforms (i.e., Web mapping servers), which assumes use of the dedicated servers.

TOOLS AND TECHNIQUES

OGC WCS standard: The WCS standard incorporates the Core specification [1] and

number of extensions [2], [3], which regulate the order of additional transformations

applied to raster coverages before they are uploaded to the client. Core specification

assumes only three types of requests: GetCapabilities, DescribeCoverage, and

GetCoverage. The first one should be responded with an XML structure containing the

metadata of the Web service. Simultaneously, the second responded with an XML

structure containing metadata of the selected raster coverage. Finally, the third allows to

request loading of the selected coverage.

Additionally, the Core specification, involves subsetting (using some bounding box

parameters parameters) before coverage uploading. In particular, the Trim operation

allows to retrieve a coverage sub-area using some bounding rectangle, and the Slice

operation allows to apply the dimensions reduction to the coverage (i.e., reducing of the

number of raster bands, in terms of raster data model).

Architecture: Regardless of the programming pattern, implementation of the WCS

server assumes the presence of three internal logical modules, in case of the Core

functionality implementation. The first is program interface module (HTTP Module),

which incorporates all of the program functions and methods applied for handling of the

incoming requests and generation of the server responses in accordance with the OGC

WCS specifications. In both cases, the Hyper Text Transfer Protocol

(https://www.w3.org/Protocols/rfc2616/rfc2616) is used. The second is Metadata

Management Module that incorporates functions and methods applied to read, write, and

transformation of the coverage metadata, regarding to the coverage store format. The third

is Coverage Management Module that allows to implement the Trim and Slice operations

support.

Our approach to implementation of the WCS standard specifies two basic constraints.

These are the enablement of coverage publication on the common hosting (i.e., virtual

shared web hosting that do not provide any capabilities to install additional server-side

applications into the server operating system), and the enablement of WCS server

portability (i.e., capability of deployment via simple copying).

Programming tools: Support of the WCS specifications implies the need to handle the

HTTP requests of the specialized types and to perform server-side operations related to

management and processing of the coverage data and metadata (including subsetting

operations and uploading data to the client). Currently, all of the widely known WCS

servers are incorporated into the different server-side geospatial platforms (GeoServer,

MapServer, etc.) that cannot be deployed on virtual shared hosting. Therefore, the

deployment constraints we established raise the need to develop a compact easy

deployable Web application.

It is possible to allocate two design approaches to the Web applications publication on

virtual shared Web hosting. The first one involves the capability to develop external

applications, and the subsequent connect of the applications to the Web server and Web

interface via a program interface (e.g., Common Gateway Iinterface (CGI) applications,

Java servlets, Application Programming Interfaces (APIs) of different software Web

Physical Geography; Cartography; Geographic Information Systems & Spatial Planing

5

servers). An alternative approach assumes the development of the applications that deeply

integrated with the Web interface. In this case, different backend platforms and runtime

environments can be used, which also integrate some development tools (e.g., Hypertext

Preprocessor (PHP), Ruby on Rails, Node.js, etc.).

In our study, we used both approaches. To implement the CGI-based WCS server

prototype, the Python 2.7 programming language was used (https://www.python.org/),

which is widely demanded now in scientific research [9]. Its popularity also continues to

grow in geospatial studies. In this case, the choice of Web hosting has the only limitation,

which is support of the Python CGI scripts execution.

To implement the prototype of integrated WCS server, the Node.js (https://nodejs.org/)

platform was used, which is a framework for Web applications development and a

JavaScript runtime environment. Node.js is a rapidly developing technology with a fast-

growing community. Current versions of the Node.js are equal in performance to other

popular backend technologies (e.g., Java, Python, Ruby, PHP, etc.). More and more

companies offer virtual shared Web hosting for Node.js applications (or more exactly, for

Node.js extensions).

CGI-BASED WCS SERVER CASE
Through the CGI, the CGI application can be executed on the server upon client's request.

The application response is returned to the client also through this interface. The response

of the WCS server should be either a special way structured (in accordance with the WCS

standard) XML object or collection of geospatial datasets. Our Python CGI WCS server

handles incoming requests and generates corresponding responses using internal HTTP

Module (Fig. 1).

Figure 1. General structure and interactions of the Python CGI-based WCS server.

It should be taken into account, that quite a large number of formats is used today to store

raster coverages. Some formats involve storing metadata incorporated into one file with

the coverage data (e.g., GeoTIFF format [12]), and some split data and metadata into

separate files (e.g., Generic Binary Band Sequential format – BSQ/HDR [5]). We used

two mentioned formats to model both approaches. The BSQ/HDR format was used for

the implementation of CGI-based WCS server, and the GeoTIFF format for the

implementation of Node.js-based WCS server (see below). However, the implementation

of the support for any other raster coverage format can be brought to one of these two

models.

2nd International Scientific Conference GEOBALCANICA 2016

6

Metadata management is performed by the Metadata Management Module (Fig. 1). The

BSQ/HDR format involves the raster data storage in the form of a pure binary array

without a header. In this case, the data of every raster band are written to a file sequentially

one band after another. The metadata is stored in the external header text file (HDR file

[5]). In some cases, metadata may be stored in the text file that formed using another

notation. In our case, this implies that it can be needed to generate HDR file additionally.

As an example of such notation, the metadata of the AVHRR Global Land Cover datasets

(http://glcf.umd.edu/data/landcover/data.shtml) can be mentioned (Fig. 2), which we can

convert quite simple to the HDR representation (Fig. 3).

Figure 2. A fragment of text representation of the AVHRR Global Land Cover metadata.

Figure 3. Content of the HDR file.

It should be noted, that the necessary and sufficient information needed to ensure the

functionality of the WCS Core are the coordinates of the initial raster cell (lines 7 and 8,

Fig. 3) and the raster spatial resolution along the axes (lines 9 and 10, Fig. 3).

The functionality of Coverage Management Module (Fig. 1) is applied to produce Trim

and Slice operations. It was necessary to ensure the possibility of the CGI WCS server

implementation as a standalone Web application that does not require any dependencies

and installations of additional libraries or applications (which are not possible on virtual

shared hosting). Regarding this, we had the key problem that consisted in the inability to

Physical Geography; Cartography; Geographic Information Systems & Spatial Planing

7

manage raster formats using the GDAL library (http://www.gdal.org/). This library is the

de facto standard for management of geospatial raster data (i.e., read, write, convert,

extract metadata, etc.). GDAL was ported to several programming languages, including

Python. However, the library needs to be installed in the operating system.

Due to the unavailability of the common raster data management instruments, we have

implemented the obvious solution. We developed methods for native Python metadata

parsing and saving from/to HDR text file as well as native Python reading and writing of

the coverage binary data from/to BSQ file.

Thus, to publish raster coverage on some Web resource using developed CGI WCS server

prototype, the administrator of the Web resource needs to do three steps. He needs to

upload CGI application (WCS server) files into the CGI folder on the server; then, to

upload the coverage file and the metadata file into a dedicated folder on the server; and

finally, to specify the path to this folder in the configuration file of the CGI application.

When a client requests the list of available coverages from the WCS server (executes

GetCapabilities request), the WCS server search all of the files of a supported format, and

executes XML response. Further, when client requests metadata of a particular coverage

(DescribeCoverage request), the server reads the coverage metadata, and executes another

XML response. Finally, responding to the GetCoverage request, the WCS server reads

the data from the selected coverage file, and generates a derivative coverage file, using

Trim and Slice operations regarding to the request parameters. Then, produced coverage

is uploaded to the client.

Additionally, the WCS server supports the use of manually generated metadata files that

contain the WCS metadata and metadata of the separate coverages in XML format. In the

case of such files presence in the data folder, automatic generation of metadata for server

is not produced.

NODE.JS-BASED WCS SERVER CASE
Architecture of the Node.js platform provides flexible functionality extension through the

connection of additional modules, which are installed on the platform using the integrated

deployment mechanism [4]. The platform itself and any additional modules are

distributed as Free and Open Source Software (FOSS). To implement support of needed

HTTP requests and responses we used the Express.js framework (http://expressjs.com/),

which extends the Node.js functionality through the introduction of basic methods for

receiving of the HTTP requests and responding to them [7].

Using Express.js we implemented handling of the basic WCS requests (GetCapabilities,

DescribeCoverage, GetCoverage). Three eponymous methods were developed in

addition to the basic Express.js functionality. Thus, Express.js extended with new

methods performs the role of the HTTP Module (Fig. 4). As in the case of CGI-based

WCS server prototype, the requests are executed using the HTTP GET method. Next

URL schema is used for the request execution:

<host>:<port>/<path>/<method>?<parameters>

2nd International Scientific Conference GEOBALCANICA 2016

8

Figure 4. General structure and interactions of the Node.js-based WCS server.

As it was mentioned above, our Node.js-based WCS server prototype supports GeoTIFF

format for coverages storing. To implement GeoTIFF support, we used the

GeotiffParser.js JavaScript library (https://github.com/xlhomme/GeotiffParser.js), which

is designed only for reading GeoTIFF files. To implement the Trim and Slice operations

and possibility of writing the coverage into new file, we have expanded the library with

additional methods. Thus, in this case, the extended GeotiffParser.js library plays the role

of a Metadata Management Module and Coverage Management Module, at the same

time.

Storing of the published coverages is carried out in server file system. However, control

and management of the Data Storage is implemented directly in Node.js. The

administrator needs only to upload the coverage files into the dedicated coverages folder

on the server. When the GetCoverage request is handled, the server loads the selected

coverage file into RAM; checks the validity of the Trim/Slice bounding box parameters

that were received with the request; and copies the trimmed/sliced part of the original

coverage into the new GeoTIFF file, which is temporarily cached and uploaded in

response to the client.

Because the Node.js platform and JavaScript in general are executed in asynchronous

mode, the WCS server unable to handle other incoming requests when running the

coverage subsetting. To solve this problem, we used processing with interruptions. At the

every fixed computation step (in looping operations), the application stops and verifies

the presence of the incoming requests. If any new incoming request is presented, it is

logged and placed into the processing stack. Then the interrupted processing loop

continues.

In the case when another request estimated to be handled faster (for example when the

bounding box is smaller), the previous request handling is suspended, and new handling

starts. Due to this technique, we obtain a self-balancing option in the WCS server

functionality.

CURRENT RESULTS AND FUTURE WORK
Both software prototypes developed in the context of described study are licensed as the

FOSS. Python CGI WCS executable instance and its source code are accessible at

Physical Geography; Cartography; Geographic Information Systems & Spatial Planing

9

http://195.70.211.131/pywcs/. The Node.js WCS instance and source code are accessible

at http://195.70.211.131/nodejs/.

To provide preliminary performance estimation for the developed prototypes, we

conducted the tests of the subsetting time (Fig. 5 and Fig. 6). These tests were performed

with 3 Gb RAM and 2.2 GHz dual-core CPU. One-channel raster was used in both cases.

Figure 5. Processing time diagram for the implemented Python CGI-based WCS server.

Figure 6. Processing time diagram for the implemented Node.js-based WCS server.

Presented graphs show the time that were spent for extracting needed segments of the

raster coverage, when the coverage is previously loaded into RAM. Significant

differences in the processing time is caused by the differences in the program code design.

In the case of Python CGI, the coverage data is extracted as the row segments from the

coverage binary array, while in the case of Node.js, the data is extracted as separated

coverage cell values (due to design of theGeotiffParser.js library [6]). This technique was

used as a temporary solution, to facilitate development of the application prototype.

However, subsetting time measured in the case of Node.js for the sub-coverages up to

500x500 pixels demonstrates good potential of computations optimization.

2nd International Scientific Conference GEOBALCANICA 2016

10

Future work implies the study of implementation techniques for extensions of the WCS

standard, both for the CGI case and for the Node.js case. However, the actual issue is the

computational performance raising, through the source code optimization or through the

use of some additional techniques. For example, the possibility of processing clustering

can be explored for the case of multiple CPU cores availability. Another potentially

interesting approach can be a breaking the stored coverage into parts (tiles or separated

bands) to optimize the process of coverage subsetting.

REFERENCES

[1] Baumann P. (ed.), 2012. OGC WCS 2.0 Interface Standard – Core: Corrigendum.

OGC 09-110r4. Version: 2.0.1, 2012-07-12

[2] Baumann P., Yu J. (eds.), 2014. OGC Web Coverage Service Interface Standard –

CRS Extension. OGC 11-053r1. Version: 1.0, 2014-03-11

[3] Baumann P., Yu J. (eds.), 2014. OGC Web Coverage Service Interface Standard –

Scaling Extension. OGC 12-039. Version: 1.0, 2014-02-26

[4] Casciaro M. Node.js Design Patterns. Packt Publishing, 2014, 454 p.

[5] Extendable Image Formats for ArcView GIS 3.1 and 3.2. ESRI White Paper, July

1999, 19 p.

[6] GeotiffParser.js source code. Accessible at

https://github.com/xlhomme/GeotiffParser.js/blob/master/js/GeotiffParser.js (Visiting

date is February 24, 2016).

[7] Hahn E. Express.js in Action. Manning Publications, 2016, 245 p.

[8] Kazakov E., Terekhov A., Kapralov E., Panidi E. WPS-based technology for client-

side remote sensing data processing. International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, Volume XL-7, Issue W3, 2015, pp.

643-649. doi:10.5194/isprsarchives-XL-7-W3-643-2015

[9] Martelli A., Ravenscroft A., Ascher D. Python Cookbook. 2nd Edition, O'Reilly

Media, 2005, 846 p.

[10] Panidi E., Kazakov E., Kapralov E., Terekhov A. Hybrid geoprocessing Web

services. SGEM2015 Conference Proceedings, Book 2, Volume 1, 2015, pp. 669-676.

doi:10.5593/SGEM2015/B21/S8.084

[11] Panidi E., Terekhov A., Kapralov E., Kazakov E. Case study of lightweight

geospatial web servers’ implementation. International Symposium on Digital Earth,

October 5-9, 2015, Halifax, Nova Scotia, Canada, Abstract Volume, 2015, p. 49.

[12] Ritter N., Ruth M. GeoTIFF Format Specification. GeoTIFF Revision 1.0.

Specification Version: 1.8.2, 2000.

