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ABSTRACT 

The density of the hydrographical network in Romania is high; hence, many settlements 

are situated in the major floodplain, which is often subjected to floods. The elaboration 

of hydrological risk maps for the major hydrographical arteries is extremely useful for 

the development plans of human settlements within plateaus and plains. The Jijia River 

is the main tributary within the northern sector of the Prut River. It dredges the Moldavian 

Plain from the NW towards the SE. The modelling of floods in the floodplain of the Jijia 

River involved three stages. In the first stage, the data necessary for simulating floods 

were collected (i.e. maximum flows from the hydrometric stations and the LIDAR data). 

In the second stage, the data obtained were processed (theoretical flows with assurances 

of 0.1%, 1%, 3% and 5% were calculated using the Pearson III formula and the LIDAR 

data were processed). In the third stage, the floodable stripes were obtained using the 

software programs Arc-GIS, HEC-GeoRAS and HEC-RAS. Finally, maps with potential 

floodable areas were generated. The floodable surface on the Jijia River is 119.078 km2 

for the assurance of 0.1%, 102.06 km2 for the assurance of 1%, 84.99 km2 for the 

assurance of 3% and 71.45 km2 for the assurance of 5%. Along with the potentially 

floodable surface, the level of flooding was obtained: it reached a peak value of 6.83 m 

in case of the assurance of 0.1%. Using the existing data, an analysis was conducted 

regarding the potential risks in case of major floods. The purpose of the study is to prevent 

floods and to mitigate their effects on the human settlements within the floodplain of the 

Jijia River. 
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INTRODUCTION 

Floods are the most devastating phenomena that cause major changes in the topographic 

area over time, affecting socially and economically human communities. Overlapping 

abundant precipitation with the sudden melting of snow is the main cause of floods in the 

temperate zone. In Romania, this phenomenon manifests itself most frequently at the 

beginning of the spring [1-7].  
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Regarding the floods that occur in the NE of Romania, there are several studies in national 

[8-13] and international literature [14-17] which identified and described the extreme 

phenomena associated with the maximum leakage and the devastating effect of their 

manifestation. In 2013, the first floodplains were made by The Prut-Barlad River Basin 

Administration, using LiDAR and the MIKE software. 

The present paper aims at carrying out a flood simulation with the assurance of 0.1%, 1%, 

3% and 5% using the HEC-RAS methodology. Thus, the hydrological risk map for the 

Jijia River basin is further developed, in addition to the data of the Prut-Barlad River 

Basin Administration. 

 

STUDY AREA 

The Jijia hydrographic basin is located in the north-eastern part of Romania, being part 

of the Moldavian Plain. From the hydrographic point of view, the Jijia basin area is part 

of the Prut River basin, the Jijia River being a tributary of its right. From the 

administrative and territorial point of view, the study area corresponds to the counties of 

Botosani and Iasi (Fig.1). 

The geological deposits specific to the Jijia River basin belong to the Upper Holocene 

and the Upper Pleistocene. From a climatic point of view, in the Jijia River basin, an 

average annual temperature of 9 to 9.5°C is recorded and the annual rainfall is relatively 

small compared to the country average, with values ranging from 550 to 600 mm per year 

. The climatic characteristics, vegetation and rock type of the Jijia River meadow have 

facilitated the development of Aluviosol soils, predominantly eutrium Aluviosol. Also in 

the meadow area there are Solonet soil areas. 

 

 
Figure 1. The location of the Jijia River basin on the territory of Romania 
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METODOLOGY 

To carry out the present study, it was necessary from the beginning to digitize the relief 

elements that formed the basis for flood modeling in order to obtain floodable surfaces. 

The spatial database was extracted from a Digital Trainee Model (DTM) obtained by 

LiDAR technology (DTM resolution of 0.5 m, 1: 5,000) and bounded by aerial images 

(orthophotomaps with a resolution of 0.5 m, 1:5,000). Vector digitization and simulation 

of flood strips were performed using ArcGIS software and HEC-RAS and HEC-GeoRAS 

extension [18-20]. To simulate flood strips, it was necessary to generate the following 

vector strata: the Jijia River valley, which coincides with the drainage channel, the banks 

of the minor bed, the major bed, the land use mode, as well as cross-sections with an 

equidistance between 20 m in the case sinuous sectors, and up to 300 m in the case of low 

sinusoidal sectors. For flood HEC-RAS simulation, based on the LiDAR-type elevation 

raster, a .tin file for the Jijia River meadow was generated. The flood simulation was 

performed for four levels of insurance, these being: 0.1%, 1%, 3% and 5%. For the 

calculation of the flood probabilities, the flow rates and daily levels from four 

hydrometric stations on the Jijia River from 1969 to 2015 were obtained from the Prut-

Barlad River Basin Administration. 

Given that the data is only available for 46 years, and for calculating the probability of 

occurrence of a hydrological phenomenon over a period of 100-1,000 years, data is 

required over the 1,000 year period, it has been calculated theoretical assurance with the 

Pearson III formula (Eq.1): 
Eq.1: Qp% = Qmed*(1+Cv*φp%) 

 

where: Qp – the insurance rate flow; Qmed – average rate flow; Cv – coefficient of variation; φp%  - 

ordinate of the insurance curve for Cv=1  

 

For the recorded data the empirical assurance was calculated using Weibull's formula 

(Eq.2): 
Eq.2: Pi = i/(n+1)*100 

where: Pi % – probability of occurrence of a measured rate flow; i – order number of decreasing 

orderly rate flow; n – the total number of string terms  

 

To calculate the water volume as part of the floods taken over by lakes located in the Jijia 

River meadow, the formula (Eq.3) was used: 
Eq.3: V=S1+S2/2*h 

where: V – the volume taken over; S1 – surface of lake water; S2 – the total surface of the lake; h 

– the difference between the lake and the sum of the flood rate with the topographic surface [21-

26]. 

 

RESULTS AND DISCUSSIONS 

To assess the hydrological risk and vulnerability of the Jijia meadow population, several 

floodplains were generated with theoretical assurance of 5% (20 years), 3% (33 years), 

1% (100 years), and 0,1% (1,000 years). These simulations were designed to analyze 

potentially flooded areas, assess the damage they generate, and look for new solutions to 

mitigate them (Table 1). 
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Table 1. Theoretical flows (m3/s) calculated using Pearson III formula 

Type of discharge 

probability 

Theoretical discharge m3/s calculated for 3 gauge stations 

Dorohoi Dângeni Todireni 

0.1% 356.16 261.18 471.34 

1% 211.49 174.71 286.45 

3% 145.81 134.59 208.60 

5% 115.46 116.26 171.97 

 

Flood probability of 5%. The total flood area generated by a 5% assurance flow reaches 

a value of 71.44 km2 and is manifested along the Jijia River meadow (Fig. 2). The 

maximum flood level, associated with 5% probability of occurrence, reaches a value of 

5.90 m in the narrow areas of Jijia meadow, especially in the floodplain areas between 

Dorohoi and Dangeni hydrometric stations. In the sinking areas of the small bed, the 

floodplain area widens, but the level of flood water is lower. 

 The minimum level reached by the flood with the probability of 5% is 0.24 m in 

the meadow areas with a larger width, but also at the ends of the flood plain. Lakes and 

ponds located in the major meadow of the rivers take up a volume of water, greatly 

attenuating the flood. Thus, Lake Iezer takes 8.87 million m3 of water, thus protecting the 

city of Dorohoi from major waters. Borsa and Campeni lakes take a volume of water of 

1.77 million m3 and 0.41 million m3 respectively (Fig. 3). 

Flood probability of 3%. In the case of flood simulation obtained with 3% probability 

flows, the flow rates of 145.81 m3/s for the Dorohoi hydrometer station, 134.59 m3/s for 

Dangeni and 208.60 m3/s for Todireni were introduced in the HEC-RAS software. Thus, 

a floodable area of 84.98 km2 was obtained (Fig. 2). Depending on the sinking of the 

minor bed and the major bed topography, this area narrows in certain areas where the 

flood level increases to a maximum of 6.07 m. The minimum level is recorded, as with 

the flood with the probability of 5% , towards the extremities of the floodplain, as well as 

in downstream areas where hydro-technical embankment works have been carried out, 

which mitigate the flood. The minimum flood level is 0.25 m (Fig. 3). 

Flood probability of 1%. For simulation of flood with the probability of producing a 1 

to 100 year frequency flow, the theoretical flows obtained with Pearson III formula were 

introduced into the HEC-RAS software. Thus, for the Dorohoi hydrometric station the 

flow rate was 211.47 m3/s, for Dangeni 174.71 m3/s, and for Todireni 286.45 m3/s (Table 

1). The flooded area is 102.05 km2 (Fig. 2) and the maximum flood level is 6.35 m. The 

minimum level is recorded, as in previous cases, at the extremities and in the areas where 

the Jijia River has been regularized, the value being 0.26 m (Fig. 3). 

Flood probability of 0.1%. For simulation of the flood with a probability of 0.1%, the 

flows 365.16 m3/s for Dorohoi station, 261.18 m3/s for Dangeni and 471.34 m3/s for 

Todireni were introduced. Thus, by processing the data, it was obtained a 0.1% flood 

band. The flooded area is 119.07 km2 (Fig. 2). The average flood level is 3.55 m, the 

maximum is 6.83 m and the minimum is 0.28 m (Fig. 3). 

 

CONCLUSIONS  

The objective of this study was to estimate and model in the GIS environment potential 

flood plains in the Jijia River basin with 1,000 year, 100 year, 33 year and 20 year 

demonstration frequencies and floodplains. Following flood bands, floodplains were 

obtained with the following values: 119.08 km2 for the flood with a probability of 0.1%, 

102.06 km2 for the flood with a probability of 1%, 84.99 km2 for the flood with a 
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probability of 3% and 71.45 km2 for flood with a probability of 5%. As far as potential 

floods are concerned, they can reach a maximum of over 6 m, which could lead to 

considerable damage. By obtaining flood strips and their levels, settlements with high 

flood potential can be identified and timely action can be taken to mitigate floods and 

reduce damage. 

 

 
Figure 2. Cartographic representation of floodable areas with assurance of de 0.1%, 1%, 3% and 5%: a. 

Dorohoi locality; b. Iacobeni locality; c. Calugareni locality; d. Broscauti locality; e. Hipiceni locality; f. 

Trusesti locality; g. Mascateni locality; h. Strahotin and Dangeni localities. 
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Figure 3. Cartographic representation of flood band levels with the probability of occurrence of 1 in 

1,000 years: a. Higher sector; b. Ungureni - Dangeni sector; c. the Albesti - Hipiceni sector; d. the 

Hipiceni-Andrieseni sector; e. Lower sector 
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