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ABSTRACT  

Subhedral to euhedral epidote occurs with compositional and sector zoning in a 

metamorphic sole at the bottom of a Neotethyan ophiolitic mélange.  The epidote is 

characterised by low Fe2O3 (5–8%) , high Al2O3 (26-30 %), and minor TiO2 (0.05-0.18 

wt%),  MnO (0.01-0.1 wt%) and MgO  (0-0.12 wt%) contents.  Petrographical and 

mineralogical characteristics and various aluminium-in- hornblende geobarometry 

estimates suggest that the amphibole associated with epidote was possibly crystallized 

from a wet tholeiitic/alkaline magma between ~3.5-7 kb pressure conditions. 
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INTRODUCTION 

Epidote can be formed by medium-temperature alterations [1] and high pressure 

metamorphism [2] as well as by magmatism with various chemical compositions [3], [4], 

[5].  Metamorphic sole units at the base of Neotethyan ophiolitic mélange in the SW part 

of Konya city (Figure 1) contains metabasic rocks, namely, amphibolite, epidote-

amphibolite, zoizit-amphibolite, garnet-amphibole schist, amphibole schist, plagioclase 

amphibole schist, plagioclase-epidote-amphibole schist and q-amphibole schist. The 

metabasic rocks were represent oceanic crust, with alkaline and tholeiitic affinities [6], 

which were undergone a regional metamorphism in greenschist facies conditions, as 

evidenced by existence of chlorite and albite association.  Subhedral to euhedral 

widespread epidote crystals occurs with compositional and sector zoning in the 

metamafic rocks.  Present study aims to study the epidote minerals with determining its 

crystallizing conditions.  

  

MATERİAL&METHODS 

Twenty-six petrographic thin sections were studied under the microscope to determine 

composition and texture.  Polished sections (25*46 mm) of representative rock samples 

were made at the thin-section Laboratory of MTA-Ankara.   Polished slides were coated 

with carbon and then analyzed at the Electron Microprobe Laboratory of Middle East 

Technical University, Ankara/TURKEY.  Mineral analyses were performed on a JEOL 

JSM35 Electron Microprobe running Link QX2000 energy dispersive analytical software.  
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 PETROGRAPHY&MINERAL CHEMISTRY 

The subhedral to euhedral epidote (sensu lato) (0.1-0.4 mm, 23.5-38.4 %) forms as a 

single grain preceded by pyroxene, or rarely in aggregate.  It resorbs and truncates an 

optically continuous amphibole, suggesting an igneous origin for epidote [9].  

 

 

Figure 1: a) Tectonic units of Turkey [7]   b) Geological map of the study area [8] 

The epidote minerals were analysed by electron microprobe at METU, Ankara (Turkey).  

The epidote is characterised by low Fe2O3 (5–8%), high Al2O3 (26-30 %), and minor TiO2 

(0.05-0.18 wt %), MnO (0.01-0.1 wt %) and MgO (0-0.12 wt %) contents.  The epidote 

crystals are mainly zoisite [Xcz: (Al3+– 2)/ (Fe3+ + Al3+ – 2 + Cr3+)] in composition, 

ranging from Xcz = 0.46-0.72 whilst epidote composition [Xep: Fe3+ / (Fe3+ + Al3+– 2 + 

Cr3+)] also exists, with Xep =0.27-0.53.   

 

DISCUSSION&CONCLUSIONS 

The epidote is subhedral to euhedral (Error! Reference source not found.), and embays 

and truncates an optically continuous amphibole, suggesting an igneous origin for 

epidote. TiO2 contents of the samples range from 0.05 to 0.31 wt%, but mostly less than 

0.2 wt%, also confirming an igneous origin [10]. 

a 

b 
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To constrain crystallisation pressure of the epidote, various Al-in-hornblende 

geobarometers used for the amphiboles associated with epidote. High NaM4 and Alıv 

contents of the amphiboles that associated with epidote suggest high pressure condition 

(up to 7 kbar) for their crystallisation.  Various Al-in-hornblende geobarometers (Table 

1) give variable crystallisation results, ranging from 2.1 to 9 kb.  [11] and Thomas 1990 

[12] geobarometer gives higher and lower pressures, respectively.  Taking account the 

standard deviation of the geobarometer results, the amphibole associated with epidote is 

likely to be crystallised in a range of pressure ranging from 3.5 to 7 kb.   Similar high 

pressure crystallisation in ophiolitic gabbro is also determined such as cumulate 

pyroxenite and gabbro of tholeiitic Andaman Ophiolite (7–8.6 kb, Saha et al., 2010) in 

Andaman-Nicobar Islands, India), hercynite gabbronorite of Sikhote-Alin ophiolites (5-

12 kbar[13] in the Russian Far East.  

Modal abundance of amphibole and lack of the water free – mafic minerals, such as 

olivine and pyroxene in the sample suggest that the epidot and amphibole are likely to be 

crystallised from H2O-rich magma, which is substantial in setting epidote in the 

crystallisation sequence of wet-silicate magmas [14], [15]. 

Table 1. Results of Al-in hornblende geobarometer calculations.  SD: standard deviation 

Geobarometers Results SD 

[16] 3.9-7.3 (± 3) 

[17] 4.03-7.8 (±1 ) 

[18] 6.1-9 kb (± 0.5) 

[12] 2.1-5.7 (± 1) 

[19] 4.4-7.6 (±0.6) 

[20] 
3.4 (±0.5)- 

6.2  (± 1; ±16 %) 
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